Gazele de șist?

Nu am nicio competență în acest domeniu. Tocmai de aceea asupra acestei chestiuni nu m-am pronunțat până acum. Am încercat să mă documentez, căutând specialiști cu inimă de om în ei pe care să-i consult, să le aflu părerea. Am găsit câțiva, care m-au pus în legătură și cu alte persoane care cunosc subiectul, inclusiv angajați ai unor ambasade occidentale, înalți funcționari UE. Am ajuns astfel să pricep două lucruri:
1. Exploatarea gazelor de șist va distruge pentru totdeauna habitatul uman din regiunile unde se vor face astfel de exploatări, precum și în zonele învecinate.
2. Beneficiarii acestor exploatări sunt proprietarii unui SRL din Olanda, care se feresc să li se afle identitatea.

Pun acest blog la dispoziția celor care se angajează să lupte împotriva deciziei iresposabile a guvernanților noștri de a permite asemenea exploatări în România. La fel, emisiunea ÎNTREBĂRI LĂMURITOARE de la NAȘUL TV va fi gazdă bună pentru cei care luptă împotriva exploatării gazelor de șist și a proiectului Roșia Montană. Vom învinge punând adevărul la dispoziția publicului.
Public mai jos două texte edificatoare, unul în rusă, altul în engleză. Îi invit pe cei care se pricep să pună în circulație aceste texte, chiar și fără o traducere în limba română, ca să câștigăm timp. Aștept, firește și traducerea în limba română, pe care s-o punem la dispoziția publicului larg, îndeosebi în zonele amenințate de catastrofă.
Nu în ultimul rând, să încercăm să aflăm cine sunt nemernicii care atentează la integritatea teritoriului românesc și pe această cale: distrugerea pământului românesc! Transformarea unor întinse suprafețe în zone de ne-locuit!
Am primit o informație credibilă în această privință, dar încerc să primesc și o confirmare, dintr-o altă sursă!
Îi invit pe vizitatorii acestui blog să se alăture celor care deja sunt angajați în lupta împotriva acestor proiecte criminale. Să li se alăture spre a spori eficiența eforturile care se depun. Să fim inventivi în găsirea căilor de atac, să fim perseverenți! Țara este în primejdie! Este atacată într-o manieră necunoscută până azi, să nu stăm spectatori la ce se întâmplă! Nemernicii mizează pe inerția noastră!
i.c.

Сланцевый газ

Типы природного газа: обычный (A), сланцевый (C), из жёсткого песка (D), попутный (F), угольный метан (G)

48 сланцевых бассейнов (выделены коричневым цветом) в 38 странах (выделены белым цветом), включённых в отчёт U.S. Energy Information Administration «World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States»
Сла́нцевый приро́дный газ (англ. shale gas) — природный газ, добываемый из горючих сланцев и состоящий преимущественно из метана.

История
Первая коммерческая газовая скважина в сланцевых пластах была пробурена в США в 1821 году Уильямом Хартом (англ. William Hart) во Фредонии, Нью-Йорк, который считается в США «отцом природного газа». Инициаторами масштабного производства сланцевого газа в США являются Джордж П. Митчелл[1] и Том Л. Уорд.
Масштабное промышленное производство сланцевого газа было начато компанией Devon Energy в США в начале 2000-х, которая на месторождении Barnett Shale в 2002 году пробурила впервые горизонтальную скважину[2]. Благодаря резкому росту его добычи, названному в СМИ «газовой революцией»[3][4][5], в 2009 году США стали мировым лидером добычи газа (745,3 млрд. куб. м), причём более 40 % приходилось на нетрадиционные источники (метан угольных пластов и сланцевый газ).
В первом полугодии 2010 года крупнейшие мировые топливные компании потратили $21 млрд на активы, которые связаны с добычей сланцевого газа[6]. На тот момент некоторые комментаторы высказывали мнение, что ажиотаж вокруг сланцевого газа, именуемый сланцевой революцией, — результат рекламной кампании, вдохновлённой рядом энергетических компаний, вложивших значительные средства в проекты по добыче сланцевого газа и нуждающихся в притоке дополнительных сумм[7][8]. Как бы то ни было, после появления сланцевого газа на мировом рынке цены на газ стали падать[9].
К началу 2012 года цены на природный газ в США упали до уровня значительно ниже себестоимости добычи сланцевого газа, в результате чего крупнейший игрок на рынке сланцевого газа — компания Chesapeake Energy — объявила о сокращении производства на 8 %, а капитальных вложений в бурение — на 70 %[10][11]. В первом полугодии 2012 года газ в США, где наблюдалось его перепроизводство, стоил дешевле, чем в России, которая обладает крупнейшими в мире разведанными запасами газа[12]. Низкие цены вынудили ведущие газодобывающие компании сократить добычу, после чего цены на газ пошли вверх[13][14] К середине 2012 года ряд крупных компаний, занимающихся добычей сланцевого газа, стали испытывать финансовые трудности, а Chesapeake Energy оказалась на грани банкротства[15][16]
Себестоимость добычи
По сведениям директора Института проблем нефти и газа РАН академика Анатолия Дмитриевского, себестоимость добычи сланцевого газа в США на 2012 год — не менее 150 долларов за тысячу кубометров[9]. По мнению большинства экспертов, себестоимость добычи сланцевого газа в таких странах, как Украина, Польша и Китай, будет в несколько раз выше, чем в США.[15]
Себестоимость сланцевого газа выше, чем традиционного. Так, в России себестоимость природного газа со старых газовых месторождений, с учётом транспортных расходов, составляет около $50 за тыс. куб. м.[17][18][15]
Технология добычи
Для добычи сланцевого газа используют горизонтальное бурение (англ. directional drilling), гидроразрыв пласта (англ. hydraulic fracturing) и сейсмическое моделирование. Аналогичная технология добычи применяется и для получения угольного метана. Вместо гидроразрыва пласта может использоваться пропановый фрекинг.[19]
Хотя сланцевый газ содержится в небольших количествах (0,2 — 3,2 млрд м³/км²), но за счет вскрытия больших площадей можно получать значительное количество такого газа.
География, оценка запасов и перспективы добычи
Ресурсы сланцевого газа в мире составляют 200 трлн куб. м.[20] В настоящее время сланцевый газ является региональным фактором, который имеет значительное влияние только на рынок стран Северной Америки.[21]
В числе факторов, положительно влияющих на перспективы добычи сланцевого газа: близость месторождений к рынкам сбыта; значительные запасы; заинтересованность властей ряда стран в снижении зависимости от импорта топливно-энергетических ресурсов.[21][22] В то же время у сланцевого газа есть ряд недостатков, негативно влияющих на перспективы его добычи в мире. Среди таких недостатков: относительно высокая себестоимость; непригодность для транспортировки на большие расстояния; быстрая истощаемость месторождений; низкий уровень доказанных запасов в общей структуре запасов; значительные экологические риски при добыче.[21][9]
По оценке IHS CERA, добыча сланцевого газа в мире к 2018 году может составить 180 млрд кубометров в год.[21]
США

Буровая на месторождении сланцевого газа в Пенсильвании (США)
В США разведанные запасы сланцевого газа составляют 24 трлн куб. м. (на данный момент технически извлекаемы — 3,6 трлн куб. м.[23]) или более 10% от мировых. Ведущей корпорацией в США по добыче сланцевого газа является Chesapeake Energy.[24]
В 2009 году добыча сланцевого газа в США составила 14 % от всего горючего газа; его доля увеличивается[25], что в 2009 году привело к существенным изменениям в распределении мирового рынка горючего газа между странами[26] [27] и образованию избыточного предложения на рынке к началу 2010 года[28]. В результате роста добычи сланцевого газа терминалы по импорту сжиженного газа, построенные в США, оставались бездействующими. В настоящее время они переоборудуются для экспорта газа (см. сланцевая революция).[29]
В ноябре 2009 года пресс-секретарь Белого дома заявил, что «использование сланцевого газа, как ожидается, значительно повысит энергетическую безопасность США и поможет снизить загрязнение парниковыми газами».[30]
К 2010 году добыча сланцевого газа в США достигла 51 млрд кубометров в год.[31] В начале апреля 2010 года сообщалось, что Министерство энергетики США установило, что статистика по производству природного газа в стране завышалась, в связи с чем оно намерено скорректировать итоговые показатели в сторону уменьшения[32]
East European Gas Analysis прогнозирует, добыча сланцевого газа в США к 2015 году составит более 180 млрд кубометров в год. По основному прогнозу Международного энергетического агентства, добыча сланцевого газа в США к 2030 году будет не более 150 млрд кубометров в год.[21]
Европа
Крупные месторождения сланцевого газа обнаружены в ряде государств Европы[33], в частности, в Австрии, Англии, Венгрии, Германии, Польше, Швеции, на Украине[34].
В начале апреля 2010 года сообщалось, что в Польше открыты значительные запасы сланцевого газа, освоение которых планировалось в мае того же года компанией ConocoPhillips[35]. В середине 2011 года американское издание Stratfor отмечало, что «даже если поляки и обнаружат огромные запасы сланцевого газа в Померании, им потребуются десятки миллиардов долларов, чтобы построить необходимую для добычи инфраструктуру, трубопроводы для доставки, объекты для производства электроэнергии и химические заводы, необходимые, чтобы воспользоваться преимуществами этих запасов». По мнению Stratfor, «прогресс в этом направлении будет измеряться годами, возможно десятилетиями».[36] Весной 2012 года ExxonMobil пробурила в Польше две скважины и свернула проект, заявив о его нерентабельности.
Во Франции действует введённый в 2012 году 5-летний запрет на использование технологии гидроразрыва для разработки запасов сланцевого газа.[15]
МЭА прогнозирует, что добыча нетрадиционного газа в Европе к 2030 году составит 15 млрд кубометров в год. Согласно самым оптимистичным из нынешних прогнозов добыча в Европе не превысит 40 млрд кубометров в год к 2030 году. Многие полагают, что такие прогнозы занижены.[21]
Россия
25 марта 2010 года Комитет Госдумы по энергетике провел круглый стол на тему «Перспективы освоения ресурсов сланцевого газа». Участники «круглого стола» рекомендовали Правительству РФ провести оценку газосланцевого потенциала России, изучить передовые технологии добычи сланцевого газа, оценить возможность и перспективы их внедрения в России, а также детально проработать вопросы, связанные с влиянием развития сланцевой промышленности в США, и вероятным её возникновением в Европейских странах и Китае на текущие и перспективные экспортные поставки газа из России.[37] Газпром не планирует в ближайшие десятилетия начинать разработку месторождений сланцевого газа в России. В начале 2012 года зампред правления Газпрома Александр Медведев отметил, что традиционные резервы компании в 10 раз более эффективны, чем разработка месторождений сланцевого газа. По словам Медведева, компания отложила добычу сланцевого газа «в долгий ящик» и к вопросу о его добыче возможно вернётся «лет через 50-70».[38]
Ряд высокопоставленных чиновников и представителей «Газпрома» долгое время высказывался в том духе, что сланцевая революция — не более чем пиар-кампания, призванная подорвать интересы России[6]. 8 апреля 2010 года министр энергетики России Сергей Шматко заявил, что вокруг роста производства сланцевого газа в мире образовался «ненужный ажиотаж»[39]. По его мнению, развитие рынка производства сланцевого газа в США не может повлиять на энергобаланс в мире[39]. 19 апреля 2010 года министр природных ресурсов и экологии России Юрий Трутнев заявил, что рост добычи сланцевого газа является проблемой для «Газпрома» и России. Это стало первым подобного рода заявлением от российских чиновников высокого ранга[40]. В августе 2012 года замминистра экономразвития России Андрей Клепач заявил, что ранее «Газпром» недооценивал масштабы сланцевой революции, а теперь относится к ней со всей серьёзностью[41]. В октябре 2012 год президент России Владимир Путин впервые признал опасность для «Газпрома» глобальных изменений на рынке энергоносителей, происходящих вследствие наращивания объёмов добычи сланцевого газа, поручив в этой связи Минэнерго скорректировать генеральную схему развития газовой отрасли до 2030 года[42].
По мнению ряда зарубежных экспертов, ожидающиеся через несколько лет поставки сланцевого газа из США в Евразию не создадут угрозы для поставок трубопроводного газа от «Газпрома», поскольку российский газ более конкурентоспособен по сравнению с американским из-за того, что расходы по добыче и транспортировке газа из России намного ниже аналогичных расходов для сланцевого газа из США.[9][43][44][45][46] Однако, один из крупных российских предпринимателей Олег Дерипаска полагает, что у России осталось 3-4 года «сытых лет» до реального прихода сланцевого газа и сланцевой нефти, после чего она не сможет быть конкурентной в условиях ВТО. Он вместе с главой медиахолдинга «Эксперт» Валерием Фадеевым считает, что внутренний кризис неизбежен.[47]
Украина
В 2010 году Украина выдала лицензии на разведку сланцевого газа для Exxon Mobil и Shell[48].
В мае 2012 года стали известны победители конкурса по разработке Юзовской (Донецкая область) и Олесской (Львовская область) газовых площадей. Ими стали Shell и Chevron, соответственно. Ожидается, что промышленная добыча на этих участках начнется в 2018—2019 годах.[49] 25 октября 2012 Shell начала бурение первой поисковой скважины газа уплотненных песчаников в Харьковской области[50]. Соглашение между компанией Shell и «Надра Юзовская» о разделе продукции от добычи сланцевого газа на Юзовском участке в Харьковской и Донецкой областях было подписано 24 января 2013 года, в Давосе (Швейцария) при участии президента Украины[51].
Практически немедленно после этого в Харьковской и Донецкой областях начались акции и пикеты экологов, коммунистов и ряда других активистов, направленные против разработки сланцевого газа и, в частности, против предоставления такой возможности зарубежным компаниям[52][53][54].
Другие страны
Залежи сланца, из которого можно добывать сланцевый газ, весьма велики и находятся в ряде стран: Австралия[55], Индия[56], Китай[57], Канада[58].
Китай планирует в 2015 году добыть 6,5 млрд кубометров сланцевого газа. Общий объём производства природного газа в стране вырастет на 6 % с текущего уровня. К 2020 году Китай планирует выйти на уровень добычи в диапазоне от 60 млрд до 100 млрд кубометров сланцевого газа ежегодно.[59]

Гидравлический разрыв пласта
Гидроразры́в пласта́ (ГРП) — один из методов интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин. Метод заключается в создании высокопроводимой трещины в целевом пласте для обеспечения притока добываемого флюида (газ, вода, конденсат, нефть либо их смесь) к забою скважины.
После проведения ГРП дебит скважины, как правило, резко возрастает. Метод позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна. Кроме того, в настоящее время метод применяется для разработки новых нефтяных пластов, извлечение нефти из которых традиционными способами нерентабельно ввиду низких получаемых дебитов. Также применяется для добычи сланцевого газа и газа уплотненных песчаников.
Обычно на проведении ГРП и других методов интенсификации нефтедобычи специализируются сервисные нефтяные компании (Halliburton, Schlumberger, BJ Services и др.).
Технология
Технология осуществления ГРП при добыче нефти включает в себя закачку в скважину с помощью мощных насосных станций жидкости разрыва (гель, в некоторых случаях вода, либо кислота при кислотных ГРП) при давлениях выше давления разрыва нефтеносного пласта. Для поддержания трещины в открытом состоянии, как правило в терригенных коллекторах используется расклинивающий агент — проппант, в карбонатных — кислота, которая разъедает стенки созданной трещины. Однако и в карбонатных коллекторах может быть использован проппант.
При добыче нетрадиционного газа ГРП позволяет соединить поры плотных пород и обеспечить возможность высвобождения природного газа. Во время проведения гидроразрыва в скважину закачивается специальная смесь. Обычно она на 99% состоит из воды и песка (либо проппанта), и лишь на 1% – из химических реагентов. Состав химических веществ открыт. Среди них, например, ингибитор коррозии, понизители трения, стабилизаторы глин, химическое соединение, сшивающее линейные полимеры, ингибитор образования отложений, деэмульгатор, разжижитель, биоцид (химреагент для разрушения водных бактерий), загуститель. [1]
Для того, чтобы не допустить утечки жидкости для ГРП из скважины в почву или подземные воды, крупные сервисные компании применяют различные способы изоляции пластов, такие как многоколонные конструкции скважин и использование сверхпрочных материалов в процессе цементирования.
История
Проведение первого в мире ГРП приписывается компании Halliburton, выполнившей его в США в 1947 году. В качестве жидкости разрыва в тот момент использовалась техническая вода, в качестве расклинивающего агента — речной песок. Позже проводились ГРП и в СССР, разработчиками теоретической основы явились советские учёные Христианович С. А., Желтов Ю. П. (1953 год), также оказавшими значительное влияние на развитие ГРП в мире. ГРП используют также для добычи метана из угольных пластов, газа уплотненных песчаников, а также сланцевого газа. Впервые в мире гидроразрыв угольного пласта был произведён в 1954 году в Донбассе.[2] Сегодня метод ГРП довольно часто применяется как государственными, так и частными добывающими компаниями как метод интенсификации добычи нефти и газа.
Использование ГРП в России
Частные нефтяные компании «ЮКОС» и «Сибнефть» использовали на своих месторождениях метод ГРП. Ряд журналистов и экспертов тогда утверждали, что этот метод добычи нефти является варварским и приводит к разграблению месторождений. Аналогичные критические утверждения делал президент «Роснефти» Сергей Богданчиков[3].
В то же время, «Роснефть» широко применяла метод ГРП, по состоянию на 2009—2010 год «Роснефть» оставаясь в числе крупнейших клиентов нефтесерсвисной компании Schlumberger, специализирующейся на проведении гидроразрывов. В начале ноября 2006 на Приобском нефтяном месторождении, эксплуатируемом ООО «РН-Юганскнефтегаз» (дочернее предприятие государственной компании «Роснефть», получившей контроль над основным активом «ЮКОСа» — «Юганскнефтегазом»), при участии специалистов компании Newco Well Service был произведён крупнейший в России гидроразрыв нефтяного пласта. В пласт было закачано 864 тонны расклинивающего агента (пропанта). Операция велась семь часов и транслировалась в прямом эфире через интернет в офис «Юганскнефтегаза»[4]. В настоящее время в компании Роснефть делается более 2 тысяч операций по ГРП в год, абсолютное большинство новых скважин вводится в действие с ГРП.[5][6]
Критика
Документальный фильм «Газовая страна»[en] (англ. Gasland),

www.youtube.com/watch?v=96AEzQYangE
независимое исследование автора, Джоша Фокса[en], освещает целый ряд экологических проблем, связанных с использованием гидроразрыва пласта. По мнению создателя фильма, гидравлический разрыв пласта приводит к появлению в скважинной воде множества примесей, вредных для человека, включая бензол, толуол, этилбензол и диметилбензолы.[7] Для каждой операции гидроразрыва пласта используется от 80 до 300 тонн химикатов. Как описывается в фильме, в местах, где используется ГРП вода становится непригодна для питья, люди чаще болеют, у животных выпадает шерсть, ухудшается качество воздуха.
Вскоре после выхода «Газовой страны» организация Energy in Depthу, лоббирующая интересы нефтяных и газовых компаний, выступила с критикой фильма. Авторы фильма, в свою очередь, опубликовали детальный ответ на критику Energy in Depthу[8]. Группа нефтяных и газовых компаний Independent Petroleum Association of America также выступила с критикой «Газовой страны» и выпустила собственный фильм, «Страна правды»[en] (англ. Truthland). В фильме «Страна правды» героиня из Пенсильвании рассказывает о своем путешествии по месторождениям газа, где используется технология ГРП, и общается с экологами, чиновниками, местными жителями и приходит к выводу, что утверждения, приведенные в фильме «Gasland», не отвечают действительности.[9] В художественном фильме «Страна обетованная» (англ. Promised Land), вышедшем с участием Мэтта Деймона, рассказывается о противостоянии корпоративных продавцов, пытающихся купить согласие на бурение газовых скважин, и жителей небольшого американского города.

www.youtube.com/watch?v=96AEzQYangE

Environmental impact of hydraulic fracturing
From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article may require cleanup to meet Wikipedia’s quality standards. The specific problem is: this is too US-centric and some of information presented in this article belongs better to the Environmental impact of hydraulic fracturing in the United States article. It also contains some original research which was discussed while cleaning-up the Hydraulic fracturing article.. Please help improve this article if you can. (August 2012)

Illustration of hydraulic fracturing and related activities
Environmental impact of hydraulic fracturing includes the potential contamination of ground water, risks to air quality, the potential migration of gases and hydraulic fracturing chemicals to the surface, the potential mishandling of waste, and the health effects of these, like cancer.[1][2] Many cases of suspected groundwater contamination have been documented.[3][4] The EPA has noted that „Ground water contamination with constituents such as those found at Pavillion is typically infeasible or too expensive to remediate or restore (GAO 1989).”[5] A review of a University of Texas Austin study led by Charles G. Groat, reported no direct evidence that fracking’s actual injection phase resulted in contamination of ground water.[6][7][8] In the study „fracking” was defined as referring only to the injection of fluid under pressure and excluded the impact of equipment failure, spills, the nature of the fluids, preparations prior to injection, and events following the injection, such as disposal of wastewater.[6] The review suggests that problems occur due to leaks in its fluid or waste storage apparatus which it does not consider part of fracking. The review also says that gaps remain in understanding fracking.[7][8] Because hydraulic fracturing was invented in the United States,[9] and therefore has a longer history there, most of the studies of the environmental impact have been conducted there.
Contents
[hide]
• 1 Scientific debate
• 2 Air emissions
• 3 Water consumption
• 4 Groundwater contamination
• 5 Waste water management
• 6 Health Risks Due to Environmental Contamination of Fracking Fluids
• 7 Radioactive contamination
• 8 Seismology
• 9 See also
• 10 References
Scientific debate[edit]
It has been reported that the industry and governmental pressure have made it difficult to conduct and report the results of comprehensive studies of hydraulic fracturing. EPA investigations into the oil and gas industry’s environmental impact have been narrowed in scope and/or had negative findings removed due to this pressure.[10][11][12] A 2012 Cornell University report noted that it was difficult to assess health impact because of legislation, proprietary secrecy, and non-disclosure agreements that allow hydraulic fracturing companies to keep the proprietary chemicals used in the fluid secret. Pre-drilling tests and other assessments have also found that water supplies—especially private water wells—often suffer from high levels of naturally occurring contaminants, as the US Geological Survey concluded in August 2011.[13] Nonetheless, these particular Cornell researchers recommended requiring disclosure of all hydraulic fracturing fluids, that nondisclosure agreements not be allowed when public health is at risk, testing animals (and their products) raised near hydraulic fracturing sites against animals raised near hydraulic fracturing sites prior to selling them to market, monitoring of water, soil, and air more closely, and testing the air, water, soil, and animals prior to drilling and at regular intervals thereafter. Despite the lack of conclusive data, however, the researchers also wrote that „a ban on shale gas drilling is essential for the protection of public health.”[14] The co-chair of the Chemicals Technical Options Committee for the United Nations Environment Program, Dr. Ian Rae, recently criticized the Cornell researchers’ conclusions, saying, „It certainly does not qualify as a scientific paper but is, rather, an advocacy piece that does not involve deep analysis of the data gathered to support its case.” Rae added that the Cornell researchers „cannot be regarded as experts” in this particular field. Others have pointed out that the study does still raise important questions, and it echoes similar concerns of some landowners and environmental groups.[15] In addition, after court cases concerning contamination from hydraulic fracturing are settled, the documents are sealed. While the American Petroleum Institute denies that this practice has hidden problems with gas drilling, others believe it has and could lead to unnecessary risks to public safety and health.[16]

New York State Assembly members Robert Castelli and Steve Katz call for a moratorium on hydraulic fracturing in the Croton Watershed in October 2010.
The New York Times reported that the results of the 2004 EPA study were censored due to strong industry influence and political pressure (regulatory capture).[10] An early draft of the study discussed the possibility of dangerous levels of fracking fluid contamination and mentioned „possible evidence” of aquifer contamination. The final report concluded simply that fracking „poses little or no threat to drinking water”.[10] The study’s scope was narrowed so that it only focused on the injection of fracking fluids, ignoring other aspects of the process such as disposal of fluids and environmental concerns such as water quality, fish kills, and acid burns. The study was concluded before public complaints of contamination started emerging.[17]:780 The study’s conclusion that the injection of fracking fluids into coalbed methane wells posed a minimal threat to underground drinking water sources[18] may have influenced the 2005 Congressional decision that hydraulic fracturing should continue to be regulated by the states and not under the federal Safe Drinking Water Act.
The 2012 EPA Hydraulic Fracturing Draft Plan was also narrowed. It does not include studying the effects of iodine-131 (found in Philadelphia’s drinking water)[19][20][21] or other radioactive tracer isotopes used in hydraulic fracturing.[22][23][24] Nor does the draft plan include evaluating the impact of wastewater. Christopher Portier, director of the US CDC’s National Center for Environmental Health and the Agency for Toxic Substances and Disease Registry, argued that, in addition to the EPA’s plans to investigate the impact of fracking on drinking water, additional studies should be carried out to determine whether wastewater from the wells can harm people or animals and vegetables they eat.[25] A group of US doctors called for a moratorium on fracking in populated areas until such studies had been done.[26][27]
Proponents of hydraulic fracturing have claimed in the press and other media that the recent University of Texas Study („Fact-Based Regulation for Environmental Protection in Shale Gas Development”) found that hydraulic fracturing caused no environmental contamination,[28][29] although the study did note that other steps in the drilling process—excepting the actual injection of the fluid—have been sources of environmental contamination.[6] Conflicting interpretations of this study are based on disagreement between industry and the environmental community about what „hydraulic fracturing” actually is: Industry notes that hydraulic fracturing is a specific process, which takes place after the well has been drilled and the drilling equipment has left the pad; the environmental community, however, uses hydraulic fracturing, or „fracking,” to describe the entire production phase. The radioactivity of the injected fluid itself was not assessed in the University of Texas study.[6]
As of 2009, state regulators from across the country stated that they had seen no evidence of hydraulic fracturing contaminating water in their respective jurisdictions.[30] In May 2011 EPA Administrator Lisa P. Jackson testified in a Senate Hearing Committee stating that she is not aware of any proof where the fracking process itself has contaminated water.[31] EPA and other reports released since that time, however, have identified hydraulic fracturing as the likely source of water contamination.[3][5][16][32][33][34]
Air emissions[edit]
The main hydraulic-fracturing-related air emissions are methane emissions from the wells during fracturing and emissions from hydraulic fracturing equipment, such as compressor stations. According to the study conducted by professor Robert W. Howarth et al. of Cornell University, „3.6% to 7.9% of the methane from shale-gas production escapes to the atmosphere in venting and leaks over the lifetime of a well.” According to the study, this is at least 30% more, and perhaps even 100% more, than from conventional gas production. The study explains these higher emissions with hydraulic fracturing and drill out following the fracturing.[35] Methane gradually breaks down in the atmosphere, forming carbon dioxide. It means its greenhouse-gas footprint is worse than coal or oil for timescales of less than fifty years.[35][36] However, several studies have argued that the paper was flawed and/or come to completely different conclusions, including assessments by experts at the US Department of Energy,[37] by Carnegie Mellon University[38] and the University of Maryland,[39] as well as by the Natural Resources Defense Council, which concluded that the Howarth et al. paper’s use of a 20-year time horizon for global warming potential of methane is „too short a period to be appropriate for policy analysis.”[40] In January 2012, Howarth’s colleagues at Cornell University responded with their assessment, arguing that the Howarth paper was „seriously flawed” because it „significantly overestimate[s] the fugitive emissions associated with unconventional gas extraction, undervalue[s] the contribution of ‘green technologies’ to reducing those emissions to a level approaching that of conventional gas, base[s] their comparison between gas and coal on heat rather than electricity generation (almost the sole use of coal), and assume[s] a time interval over which to compute the relative climate impact of gas compared to coal that does not capture the contrast between the long residence time of CO2 and the short residence time of methane in the atmosphere.”[41] The authors of that response conclude that „shale gas has a GHG footprint that is half and perhaps a third that of coal,” based upon „more reasonable leakage rates and bases of comparison.” Howarth et al. responded to this criticism: „We stand by our approach and findings. The latest EPA estimate for methane emissions from shale gas falls within the range of our estimates but not those of Cathles et al, which are substantially lower.”[42][43]
In 2008, measured ambient concentrations near drilling sites in Sublette County, Wyoming were frequently above the National Ambient Air Quality Standards (NAAQS) of 75ppb and have been recorded as high as 125 ppb.[44] A 2011 study for the city of Fort Worth, Texas, examining air quality around natural gas sites „did not reveal any significant health threats.”[45][46] In DISH, Texas, elevated levels of disulphides, benzene, xylenes and naphthalene have been detected in the air, emitted from the compressor stations.[47] People living near shale gas drilling sites often „complain of headaches, diarrhea, nosebleeds, dizziness, blackouts, muscle spasms, and other problems.”[48] Cause-and-effect relationships have not been established in all cases.[48] In Garfield County, Colorado, another area with a high concentration of drilling rigs, volatile organic compound emissions increased 30% between 2004 and 2006; during the same period there was a rash of health complaints from local residents. Epidemiological studies that might confirm or rule out any connection between these complaints and fracking are virtually non-existent.[2] In 2012, researchers from the Colorado School of Public Health showed that air pollution caused by fracking may contribute to „acute and chronic health problems” for those living near drilling sites.[49]
Water consumptioon
The large volumes of water required have raised concerns about fracking in arid areas, such as Karoo in South Africa.[9] During periods of low stream flow it may affect water supplies for municipalities and industries such as power generation, as well as recreation and aquatic life. It may also require water overland piping from distant sources.[50] Over its lifetime an average well requires 3 to 5 million US gallons (11,000 to 19,000 m3) of water for the initial hydraulic fracturing operation and possible restimulation frac jobs.[50][51] Using the case of the Marcellus Shale as an example, fracking accounted for 650 million US gallons per year (2,500,000 m3/a) or less than 0.8% of annual water use in the area overlying the Marcellus Shale as of 2010.[50] To minimize water consumption, recycling is one possible option.[52]
Groundwater contamination
As early as 1987, an E.P.A. report was published that indicated fracture fluid invasion into James Parson’s water well in Jackson County, West Virginia. The well, drilled by Kaiser Exploration and Mining Company, was found to have induced fractures that created a pathway to allow fracture fluid to contaminate the groundwater from which Mr. Parson’s well was producing. The oil and gas industry and the E.P.A. disagreed regarding the accuracy and thoroughness of this report.[16] In 2006 5 to 7 million cubic feet of methane were released from a blown gas well in Clark, Wyoming.[53] Directed by Congress, the U.S. EPA announced in March 2010 that it will examine claims of water pollution related to hydraulic fracturing.[11]
In 2009 13 water wells in Dimock, Pennsylvania were contaminated with methane (one blew up). Arsenic, barium, DEHP, glycol compounds, manganese, phenol, and sodium were also found in unacceptable levels in the wells.[33] As a result, Cabot Oil & Gas was required to financially compensate residents and provide alternative sources of water until mitigation systems were installed in affected wells.[33] The company continues to deny, however, that any „of the issues in Dimock have anything to do with hydraulic fracturing”.[17][54][55][56] The devices needed to prevent such water contamination cost as little as $600.[57] On December 2, 2011, EPA sent an email to several Dimock residents indicating that their well water presented no immediate health threat. On January 19, 2012, the EPA reversed its position, and asked that the agency’s hazardous site cleanup division take immediate action to protect public health and safety.[58] EPA began follow up testing and sampling local water supplies in Dimock in early 2012.[59] In May 2012 EPA reported that their most recent „set of sampling did not show levels of contaminants that would give EPA reason to take further action.” Methane was found only in one well.[58] Cabot has held that the methane was preexisting, but state regulators have cited chemical fingerprinting as proof that it was from Cabot’s hydraulic fracturing activities.[59] Both Duke University and University of Rochester are conducting studies of the age of the well water to confirm the sources of the various contaminants.[59] EPA plans to re-sample four wells where previous data by the company and the state showed levels of contaminants.[58]
Complaints about water quality from residents near a gas field in Pavillion, Wyoming prompted an EPA groundwater investigation. The EPA reported detections of methane and other chemicals such as phthalates in private water wells.[5] An EPA draft report dated December 8, 2011 suggested that the ground water in the Pavillion, Wyoming, aquifer contains „compounds likely associated with gas production practices, including hydraulic fracturing”.[60][61][62] The EPA discovered traces of methane and foaming agents in several water wells near a gas rig. During the investigation Luke Chavez (EPA investigator), commented that the contaminants could have come from cleaning products or oil and gas production, but said that in either case, their presence suggested problematic practices.[54] Samples of water taken from EPA’s deep monitoring wells in the aquifer were found to contain gasoline, diesel fuel, BTEX (benzene, toluene, ethylbenzene, xylene), naphthalenes, isopropanol, and synthetic chemicals (e.g., glycols and alcohols) used in gas production and hydraulic fracturing fluid, and high methane levels. Benzene concentrations in the samples were well above Safe Drinking Water Act standards.[60] The EPA report stated concerns about the movement of contaminants within the aquifer and the future safety of drinking water in the context of the area’s complex geology. EPA’s sampling of Pavillion area drinking water wells found chemicals consistent with those reported in previous EPA reports, including but not limited to methane and other petroleum hydrocarbons, indicating migration of contaminants from areas of gas production.[60] The report also said that contaminants in wells near pits indicated that (frack) pits are a source of shallow ground water contamination. It also said, „Detections of organic chemicals are more numerous and exhibit higher concentrations in the deeper of the two monitoring wells … (which) along with trends in methane, potassium, chloride, and pH, suggest a deep source of contamination.” Their observations of chemical reactions in the field led them to suggest that upward migration of chemicals from deep underground is the culprit. They also found that the reports companies filed detailing jobs listed chemicals as a class or as „proprietary,” „rendering identification of constituents impossible.”[63] The draft report also stated: „Alter¬na¬tive expla¬na¬tions were care¬fully con¬sid¬ered to explain indi¬vid¬ual sets of data. How¬ever, when con¬sid¬ered together with other lines of evi¬dence, the data indi¬cates likely impact to ground water that can be explained by hydraulic fracturing.”[32] The EPA also said that the type of contamination found is „typically infeasible or too expensive to remediate or restore.”[5] Industry figures rejected the EPA’s findings.[32] In 2010 the U.S. Department of Health and Human Services’ Agency for Toxic Substances and Disease Registry recommended that owners of tainted wells use alternate sources of water for drinking and cooking, and ventilation when showering. These recommendations were still in place as of December 2011. Encana is funding the alternate water supplies.[60]
It is important to note that not every instance of groundwater methane contamination is a result of hydraulic fracturing. Often, local water wells drill through many shale and coal layers that can naturally seep methane into the producing groundwater. This methane is often biogenic (created by organic material decomposition) in origin as opposed to thermogenic (created through „thermal decomposition of buried organic material”).[64] Thermogenic methane is the methane most often sought after by oil & gas companies deep in the earth, whereas biogenic methane is found in shallower formations (where water wells are typically drilled). Through isotope analysis and other detection methods, it is often fairly easy to determine whether the methane is biogenic or thermogenic, and thus determine from where it is produced.[64] The presence of thermogenic methane does not confirm the source of gas. The gas composition and isotopic finger print must be compared by experts with other known sources of gas to confirm a match.[65]
In 2012 the U.S. Geological Survey tested one of two EPA monitoring wells near Pavillion and found evidence of methane, ethane, diesel compounds and phenol,[66] which the EPA had also identified in its 2011 report[67] According to Duke University environmental scientist Rob Jackson, „The stray gas concentrations are very high, not only for methane but especially for ethane and propane. That combination suggests a fossil-fuel source for the gases.”[34] An industry advocate, however, says that the USGS found lower concentrations of the particular materials that suggested a fossil-fuel source than the EPA and that what was found could be naturally occurring because of circumstances unique to the area or the testing process.[68]
In 2011, investigators from the Colorado School of Public Health performed a study in Garfield regarding potential adverse health effects, and concluded that residents near gas wells might suffer chemical exposures, accidents from industry operations, and psychological impacts such as depression, anxiety and stress. This study (the only one of its kind to date) was never published, owing to disagreements between community members and the drilling company over the study’s methods.[48]
In 2011 a Duke University study published in Proceedings of the National Academy of Sciences examined methane in groundwater in Pennsylvania and New York states overlying the Marcellus Shale and the Utica Shale. It determined that groundwater tended to contain much higher concentrations of methane near fracking wells, with potential explosion hazard; the methane’s isotopic signatures and other geochemical indicators were consistent with it originating in the fracked deep shale formations, rather than any other source.[69]
The 2011 University of Texas study described the environmental impact of each of the separate parts of the overall hydraulic fracturing process, or „phases of the shale gas development life cycle.”[6] These parts include of (1) drill pad construction and operation, (2) the construction, integrity, and performance of the wellbores, (3) the injection of the fluid once it is underground (which proponents consider the actual „fracking”), (4) the flowback of the fluid back towards the surface, (5) blowouts, often unreported, which spew hydraulic fracturing fluid and other byproducts across surrounding area, (5) integrity of other pipelines involved and (6) the disposal of the flowback, including waste water and other waste products.[28][29] Associated problems include (1) Groundwater Contamination, (2) Blowouts and House Explosions, (3) Water Consumption and Supply, (4) Spill Management and Surface Water Protection, (5) Atmospheric Emissions, (6) Health Effects[6] All but the injection stage were reported to be sources of contamination in the University of Texas study.[6] The study concluded that if hydraulic fracturing is to be conducted in an environmentally safe manner, these issues need to be addressed first.[6] Proponents have reported that groundwater contamination doesn’t come directly from the „fracking” part of the process (the injection of hydraulic fracturing chemicals into Shale rock formations) but from other parts of the hydraulic fracturing process. Injection cannot be accomplished, however, without the accompanying stages. Poorly constructed or damaged wellbores and pipelines can allow the fluid to flow into aquifers.[6] Volatile chemicals held in waste water evaporation ponds can to evaporate into the atmosphere, or overflow. In one of the cases described by a 2012 Cornell University study (conducted in Colorado, Louisiana, New York, Ohio, Pennsylvania and Texas) impounded wastewater was released into a field and pond, killing at least 70 animals.[14] The runoff can also end up in groundwater systems. Groundwater may become contaminated by trucks carrying fracking chemicals and wastewater if they are involved in accidents on the way to fracking sites or disposal destinations. Disposal of fracking fluid by injection can cause earthquakes, and release of unprocessed or under-processed waste water into rivers can contaminate water supplies.[6] Critics have noted that it is „difficult for researchers to be objective if their university receives a lot of grants and funds from the industry.”[70] An Energy Institute spokesperson said that the study was not funded by the industry. He said funds came from the university, which has a variety of funding sources.[70] There are extensive links between UT and the oil & gas industry, with the giving of Royal Dutch Shell to the university currently standing at more than $24.8 million, $4m alone having been handed over for 2012.[71][72] Since 2011, Shell has partnered Texas in a program called Shell-UT Unconventional Research, and the university has a similar research program in place with Exxon Mobil.[73] Halliburton, the largest supplier of fracking services in the United States, has also given millions of dollars to the university.[74] Statoil announced a $5m research agreement with UT’s Bureau of Economic Geology in September 2011, whose program director, Ian Duncan, was the senior contributor for the parts of the Texas study to do with the environmental impacts of shale gas development.[6][75][76]
In DISH, Texas, elevated levels of disulphides, benzene, xylenes and naphthalene have been detected in the air.[47] According to an article in ‘Environmental Health Perspectives,’ people living near shale gas drilling sites often „complain of headaches, diarrhea, nosebleeds, dizziness, blackouts, muscle spasms, and other problems.”[48] Cause-and-effect relationships have not been established.[48] Additionally, the Colorado Oil & Gas Conservation Commission has found some wells containing thermogenic methane due to oil and gas development upon investigating complaints from residents.[77]
A 2011 report by the Massachusetts Institute of Technology addressed groundwater contamination, noting „There has been concern that these fractures can also penetrate shallow freshwater zones and contaminate them with fracturing fluid, but there is no evidence that this is occurring. There is, however, evidence of natural gas migration into freshwater zones in some areas, most likely as a result of substandard well completion practices by a few operators. There are additional environmental challenges in the area of water management, particularly the effective disposal of fracture fluids”. This study encourages the use of industry best practices to prevent such events from recurring.[78]
A review published in February 2012 found no direct evidence that fracking’s actual injection phase resulted in contamination of ground water, and suggests that reported problems occur due to leaks in its fluid or waste storage apparatus; the review says that methane in water wells in some areas probably comes from natural resources.[7][8]
Waste water management
As the fracturing fluid flows back through the well, it consists of spent fluids and may contain dissolved constituents such as minerals and brine waters. It may account for about 30–70% of the original fracture fluid volume. In addition, natural formation waters may flow to the well and need treatment. These fluids, commonly known as produced water, should be managed by underground injection, wastewater treatment and discharge, or recycling to fracture future wells.[79] Treatment of produced waters may be feasible through either self‐contained systems at well sites or fields or through municipal waste water treatment plants or commercial treatment facilities.[79] However, the quantity of waste water needing treatment and the improper configuration of sewage plants have become an issue in some regions of the United States. Much of the wastewater from hydraulic fracturing operations is processed by public sewage treatment plants, which are not equipped to remove radioactive material and are not required to test for it.[80][81]
Health Risks Due to Environmental Contamination of Fracking Fluids
Fracking fluids have the potential to enter water sources, and air currents through chemical spills, through evaporation of wastewater, and through errors in the drilling process.[81] Trace amounts of these chemicals may even have an effect on the health of the direct environment of drilling industries, as well as those who inhabit it. In Colorado, the U.S. Agency for Toxic Substances and Disease Registry sampled 14 sites, and found high levels of carcinogens such as benzene, tetrachloroethene, and 1-4 dichlorobenzene.[82] In July 2011, the EPA released new emissions guidelinees stating that without new standards, current standards could lead to an unacceptably high risk of cancers exhibited in those living near drilling operations.[82] Pediatric Environmental Health Specialty Units(PEHSU) also found chemical contamination of drinking water near fracking operations in New York and Pennsylvania that involved detectable and harmful levels of benzene toluene, ethyl benzene, xylene, ethylene glycol, glutaldehyde, and other biocides such as hydrochloric acid, and hydrogen treated light petroleum distillates.[83] Human exposure to these chemicals can result in cancer, adverse effects of the reproductive, neurological, and endocrine systems.[83] Exposure to specialized chemical solutions patented by energy service companies, such as Zetaflow, used by Weatherford International, may result in kidney and liver damage, irritated lung tissue, decreased blood pressure, dizziness, and vomiting according to their Meterial Safety Data Sheet.[84]
PEHSU has linked higher vulnerability in children to health risks associated with chemical exposure to fracking fluids.[83] This increased risk is due to a higher ratio of consumption pound for pound versus adults’ rate of consumption, along with the inability to metabolize certain toxants that the body is able to metabolize as an adult.[83] The same kind of vulnerability is also exhibited in development of the fetus during pregnancy, and health risks may involve neural tube defects, decreased birth perameters, and childhood leukemia.[83]
The growing of oil and natural gas drilling employing fracking technology is steady around different regions of the United States, but the maintenance of wastewater gathered after the drilling process containing fracking fluids is lagging behind.[85] In Pennsylvania, the Department of Environmental Protection reported that the resources to properly regulate wastewater handling facilities were unavailable, inspecting facilities every 20 years rather than every 2 years like regulation calls for.[85] This lack of resources reflects the growing and remaining problems associated with health risks due to environmental contamination in environments directly near drilling sites that employ hydraulic fracturing, or fracking technlologies.
Radioactive contamination[edit]
See also: Radionuclides associated with hydraulic fracturing
The New York Times has reported radiation in hydraulic fracturing wastewater released into rivers in Pennsylvania.[81] It collected data from more than 200 natural gas wells in Pennsylvania and has posted a map entitled Toxic Contamination from Natural Gas Wells in Pennsylvania. Sand containing gamma-emitting tracer isotopes is used to trace and measure fractures.[22] Individuals exposed to high enough levels of radiation may experience symptoms of acute radiation syndrome, including fatigue, leukopenia, fever, diarrhea, vomiting, nose bleeds, dizziness, disorientation, low blood pressure, seizures, and tremors.[86] The Times stated „never-reported studies” by the United States Environmental Protection Agency and a „confidential study by the drilling industry” concluded that radioactivity in drilling waste cannot be fully diluted in rivers and other waterways.[87] Despite this, as of early 2011 federal and state regulators did not require sewage treatment plants that accept drilling waste (which is mostly water) to test for radioactivity. In Pennsylvania, where the drilling boom began in 2008, most drinking-water intake plants downstream from those sewage treatment plants have not tested for radioactivity since before 2006.[81] The New York Times reporting has been criticized by aggrieved parties,[88] but one venerable science writer has taken issue with one instance of the newspaper’s presentation and explanation of its calculations regarding dilution,[89] charging that a lack of context made the article’s analysis uninformative.[90]
According to a Times report in February 2011, wastewater at 116 of 179 deep gas wells in Pennsylvania „contained high levels of radiation,” but its effect on public drinking water supplies is unknown because water suppliers are required to conduct tests of radiation „only sporadically”.[91] The New York Post stated that the Pennsylvania Department of Environmental Protection reported that all samples it took from seven rivers in November and December 2010 „showed levels at or below the normal naturally occurring background levels of radioactivity”, and „below the federal drinking water standard for Radium 226 and 228.”[92] However the samples taken by the state at at least one river, (the Monongahela, a source of drinking water for parts of Pittsburgh), were taken upstream from the sewage treatment plants accepting drilling waste water.[93]
In Pennsylvania, much of this wastewater from hydraulic fracturing operations is processed by public sewage treatment plants. However, many sewage plants say that they are incapable of removing the radioactive components of this waste, which is often released into major rivers. Industry officials, though, claim that these levels are diluted enough that public health is not compromised.[81] This is a major concern as it provides the possibility for radioactive waste to enter into public water supplies.
The New York Times has implicated the DEP in industry-friendly inactivity, requesting rather than requiring them to handle their own flowback waste rather than sending it to public water treatment facilities.[94] However, former Pennsylvania DEP Secretary John Hanger, who served under Gov. Ed Rendell (D), has affirmed that municipal drinking water throughout the state is safe, but added that the environmentalists were accurate in stating that Pennsylvania’s water treatment plants were not equipped to treat hydraulic fracturing water.[95] Current Pennsylvania DEP Secretary Michael Krancer serving under Gov. Tom Corbett (R) has denied that untreated wastewater is being discharged into the state’s waterways.[96] It has been observed that Corbett received over a million dollars in gas industry contributions,[97] more than all his competitors combined, during his election campaign.[98] The New York Times reported that regulations are lax in Pennsylvania.[81] The oil and gas industry is generally left to police itself in the case of accidents. Unannounced inspections are not made by regulators: the companies report their own spills, and create their own remediation plans.[81] A recent review of the state-approved plans found them to appear to be in violation of the law.[81] Treatment plants are still not equipped to remove radioactive material and are not required to test for it.[81] Despite this, in 2009 the Ridgway Borough’s public sewage treatment plant, in Elk County, PA, facility was sent wastewater containing radium and other types of radiation at at 275-780 times the drinking-water standard. The water being released from the plant was not tested for radiation levels.[81] Part of the problem is that growth in waste produced by the industry has outpaced regulators and state resources.[81] It should be noted that „safe drinking water standards” have not yet been set for many of the substances known to be in hydrofracturing fluids or their radioactivity levels,[81] and their levels are not included in public drinking water quality reports.[99]
Seismology[edit]
Hydraulic fracturing causes induced seismicity called microseismic events or microearthquakes. The magnitude of these events is usually too small to be detected at the surface, although the biggest micro-earthquakes may have the magnitude of about -1.6 (Mw). The injection of waste water from gas operations, including from hydraulic fracturing, into saltwater disposal wells may cause bigger low-magnitude tremors, being registered up to 3.3 (Mw).[100]
A report in the UK concluded that fracking was the likely cause of some small earth tremors that happened during shale gas drilling.[101][102][103] In addition, the United States Geological Survey (USGS) reports that, „Earthquakes induced by human activity have been documented in a few locations” in the United States, Japan, and Canada, „the cause [of which] was injection of fluids into deep wells for waste disposal and secondary recovery of oil, and the use of reservoirs for water supplies.”[104] The disposal and injection wells referenced are regulated under the Safe Drinking Water Act and UIC laws and are not wells where hydraulic fracturing is generally performed.[citation needed]
Several earthquakes—including a light, magnitude 4.0 one on New Year’s Eve—that had hit Youngstown, Ohio, throughout 2011 are likely linked to a disposal well for injecting wastewater used in the hydraulic fracturing process, according to seismologists at Columbia University.[105] Consequently, Ohio has since tightened its rules regarding the wells,[106] increased fees, and is considering a moratorium on the practice.[106]
1. Videos: http://www.youtube.com/watch?feature=player_embedded&v=73mv-Wl5cgg
2.
3.
4.

Haliburton Well Frac Site, Christine, Texas

Sandy Creek Power Plant, Reisel, Texas

Oil Well Drilling Rig, Cuero, Texas

Schlumberger Well Frac Site, Cotulla, Texas

Oil Drilling Platform, Marshall, Texas

Oil Well, Taylorsville, Mississippi

Gas Handling Facility, Bay Springs, Mississippi

8.